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Problem Definition 
Dimensional characterization of non-rigid parts presents many challenges. For 

example, when a non-rigid part is mounted in an inspection apparatus the effects of 
fixturing constraints cause significant deformation of the part. If the part is not used in 
normal service with the same load conditions as during inspection, the dimensional 
characteristics in service will deviate from the reported values during inspection. Further, 
the solution of designing specialized fixturing to duplicate “as-installed” conditions does 
not fully resolve the problem because each inspection requires its own methodology. The 
goal of this project is to formulate the research problem and propose a method of 
assessing the dimensional characteristics of non-rigid parts. 

The measured dimension of a rigid component is traceable at some level of 
confidence to a single source (NIST in the USA). Hence the measurement of one 
component of an assembly can be related to the measurement of another component of 
that assembly. There is no generalized analog to this pedigreed process for dimensionally 
characterizing non-rigid bodies. For example, a measurement made on a sheet-metal 
automobile fender is heavily influenced by how it is held during the measurement making 
it difficult to determine how well that fender will assemble to the rest of the (non-rigid) 
car body. This problem is often overcome for specific manufacturing problems by 
constructing rigid fixtures that over-constrain the non-rigid parts to be assembled and 
then performing the dimensional measurement of the contour of each component to check 
whether each meets specification. Note that such inspection measurements will yield 
only an approximation to the assembled shape, which is a function of both the geometry 
and the compliance of the component parts of the assembly. As a result, non-rigid 
components are more difficult to specify and inspect and therefore are more difficult to 
purchase from outside vendors compared to rigid components. The problems are 
compounded as the requirements come to include higher and higher precision. 

The central idea for this project is the concept of a “free shape.” The free shape is 
the geometry of the part when no loads are present. That is, when those loads produced 
by fixturing, gravity and others are not present. Since it is impossible to directly measure 
the free shape, some method for inferring it must be developed. Once the free shape is 
known some metric must be developed for acceptance or rejection of the part. 

Ap pl icat ions 
The metrology of non-rigid parts is of direct interest to the laboratory in at least 

three ways. First, it has implications concerning the characterization of thin, 
hemispherical shells (“hemi-shells”). Second, it has application to the metrology of thin 
photomasks for extreme-ultraviolet lithography (EUVL). Third, it can help in the 
inspection of potassium dihydrogen phosphate (KDP) crystals in advanced laser systems. 
It is important to industry because it has applications to metrology of sheet-metal parts. 

Inspect ion of Hem i-S he1 Is 
The Stockpile Stewardship Program demands a better understanding of the 

deformation that occurs in hemi-shells resulting from their manufacture and assembly. 
Hemi-shells are non-rigid bodies, which for example, deform under their own weight and 
are necessarily deformed by fixtures that hold them during the manufacturing process. In 



order to inspect a hemi-shell, lL is constrained in a fixture tnat “rounds up” the equator o 
the shell and thus purposely removes some of the deformation of the shell that results, fo 
example, from non-uniform residual stress. The reason for using the rounding-ring fixturc 
is that this places the hemi-shell under a condition like it would take upon assembly to i t  
mating hemi-shell. Under this condition, measuring the outer contour is a closer estimate 
to the contour taken upon assembly than measuring the outer contour with the ---+ 

supported in a fixture that constrains only the six rigid-body motions. 

Figure I: Over-constraining Fixturc 

3gu 1 illustrates a rounding-ring fixture. The inspecto in ther )my ; th, 
measurement of the constrained shell and the drawing of a perfect shell and determine 
within some uncertainty, whether it is acceptable or not. However, a number of problem 
arise from using such fixtures. One is that the fixture, which over-constrains the shell 
imposes ill-defined constraints on the shell. Hence, slight variation in the procedure o 
conditions of the measurement introduces uncertainty into the dimensional measuremenl 
In addition, the fixturing and measurement processes that have arisen at the differen 
agencies within the DOE complex are unique to each agency and the measurement dat 
are not traceable from one institution to another. 

rnoromasKs for Extreme Ultraviolet Lithography (EUVL) 
Photomasks for EUVL are thin reflective plates with patterns of integr; 

circuits that are to be imaged onto silicon wafers. The budget for image placement error 
for EUV Lithography dictates that the patterned surface of the photomask depart less tha 
100 nm from a flat plane as it is mounted horizontally in the lithographic exposure tool. 



Unfortunately, the pnotomasks have an aspect ratio of edge-length to thickr 1 of 
about 25 and are subject to deformation by very small external forces (Figure 2). For 
example, the gravity-induced sag of a photomask on three-point support is approximately 
ten times the allowable departure from a flat plane. Thus the mask must be deformed into 
being flat as it is mounted in the exposure tool. This therefore gives rise to the problem of 
how to specify and inspect photomasks so as to ensure that it can be brought into a flat 
state as it is mounted in the exposure tool. The current standard (SEMI P37) allows only 
a 50-nm P-V departure from flatness for the freestanding photomask. Thus, the current 
standard takes a very conservative approach by treating the photomask like a rigid body, 
that is, that the chuck has no ability to flatten the mask and any existing error in the 
freestanding photomask appears directly in the as-mounted condition. While the current 
specification does guarantee that the photomask will perform, producing photomasks to 
specification is difficult and expensive. A relaxed specification of the free-shape that still 
guarantees that a photomask can be brought into specified is desirable. 

KDP Crystals 
Thin, high precision KDP crystals are used in NIF. Crystals are manufactured in 

the bmstrained condition. The final thickness of the finished crystal is approximatelq 
l.Ocm. With a width and height of 42 cm, KDP crystals have an aspect ratio that makes 
them very non-rigid (Figu 



The tinished crystals are inspected in Jertical, freestanaing condition 
optical techniques. The crystals are then edge constrained for use at a variety of angles 
relative to gravity. The combined effects of gravity loading and constraint induced 
errors turn out to be one of the dominant sources of error affecting the performance of the 
crystal. Extensive modeling and analysis has been performed to better understand these 
-=fects while attempting to improve on them in the mechanical design. 

A method for assessing the constraint system and the influence of gravity and 
other boundary conditions would greatly improve the ability to predict and/or improve 
Performance of NIF KDP crystals. 

Other Applications 
Sheet metal parts are a common example of non-ngid parts. exam 

automotive body panels must have precise geometry for aesthetic reasons. Elaborate 
specialized fixturing devices and metrics are used for characterization. A generalized 
method for assessing the dimensional characteristics of the parts would provide for i 
more flexible metrology process. 

One design goal for space-pased optics is to minimize mass. ine optics must ~t 

Irplweight to facilitate transportation into orbit. Thus, the option of adding material to 
increase rigidity is a very expensive solution. The design exercise is to manufacture and 
measure an optic under gravity and accurately predict the shape it will take in space. If 
there is large uncertainty associated with the predicted shape, then additional stiffness 
and its concomitant increase in mass is incorporated into the design to reduce tht 
uncertainty of predicting the shape in space. 

Technic proach 
The examples of the hemishells and the photomasks above illustrate two curren 

approaches to measuring and specifying non-rigid parts. In the case of the hemishel 
which is illustrated in Figure 4, they are measured in a rigid fixture that approximates 
functional environment of the part and the measurement is directly compared to i 

drawing of the ideal part to decide on the acceptability of the pa” 
Compare to 
Drawing r\f 
Ideal Par 

iith this approach it may be very difficult to know and control the constraintc 
that tne fixture imposes on the part. Hence, the fixtured state becomes a poo 
approximation to the state that the part will see in service. For example, if the part wen 
to be assembled to another non-rigid part, then a stiff fixture would poorly approximate 
the assemble condition. In addition, the shape of a non-rigid part can change dependin] 



: fi n me order in wnich it is placed into the constraints of 
uncertainty in the inspection process 

In the case of the photomasks, which is illustratea in rigure 5, they ai 
in a state that approximates the free-state and the free-state measuremenl 
compared to a drawing of the ideal part 

neasured 
directly 

Here, the free state is a very poor approximation to me state tnat me part will see 
in service. In essence, the inspection process of photomasks is much the same as that 1 
a rigid body. While these two approaches to inspecting hemishells and photomasks 
appear quite similar, they lead to very different inspection fixtures. 

rmation imposed by 
predict the shape of the 

state” condition, which is no 



single important criterion for the acceptance fixture is that it simulates the functional 
environment. But, because the acceptance fixture is a transformation of the measured 
data, it can be embodied as a finite element simulation that represents the part’s response 
to an ideal fixture. The simulation is free from problems like friction between the part 
and a hardware fixture that over-constrains the part. 

Consider first the hemispherical shell (“hemishell”) described above, whose outer 
contour is required to be spherical to some tolerance when it is assembled to a 
hemispherical mate. In current practice, a hemishell is inspected by forcing the equator to 
be round in an inspection fixture (“rounding ring”), then the diameter is measured and the 
spherical contour is measured in this constrained state. In essence, the rounding ring is 
used to bring the part into its approximate functional state. As described previously, the 
problem with using a rounding ring is that it introduces unknown constraint conditions on 
the part that are quite different from what it may see in assembly. For example, the 
process of forcing the rounding ring over the equator tends to trap friction between 
rounding ring and hemishell, which results in significant deformation of the spherical 
contour. Note that the deformation occurs not just at the equator where the rounding ring 
contacts the hemishell, but propagates quite far from the equator. Thus a perfect part 
may be rejected because of the friction associated with using the rounding ring. Also, any 
mismatch in the circumference of the rounding ring and the length of the equator of the 
part causes significant radial forces and moments at the equator and concomitant 
deformation of the spherical contour. 

The new approach is to use a measurement fixture that allows the free-state shape 
to be calculated and then to use an “acceptance” fixture that simulates its functional state. 
The acceptance fixture, which is a structural finite element analysis, does not suffer a 
number of the shortcomings of the hard fixture. The acceptance fixture simply represents 
a hard fixture that is free of friction between the fixture and part free of any mismatch 
between the length of the equator of the part and the circumference of the fixture. 

Consider a second case, the photomasks described above, which are required to be 
flat to some tolerance as they are sequentially mounted in an exposure tool. In this case, 
requiring the free-state shape of the photomask to be flat is overly restrictive because the 
mounting process has some capability to flatten the mask. One such mounting method is 
to electrostatically clamp the photomask to a planar surface. Because a photomask is 
almost planar, it can be measured with its patterned surface in a vertical plane and thus 
the deformation due to gravity becomes extremely small. Hence, the measured state is 
very close to the free-state shape. (This is unlike the hemishells, which sag under gravity 
regardless of how they are oriented or fixtured.) 

One method of inspecting photomasks is to mount them to an inspection fixture, 
one that replicates the actual chuck in the exposure tool, and then measure the resultant 
flatness. As with the hemishell inspection, the inspection fixture suffers from practical 
shortcomings. An example is that if a particle becomes trapped between the chuck and 
the photomask, then the deformation that is caused by the particle would cause the 
rejection of a good photomask. 

The new approach is again to use an acceptance fixture, which operates on the 
free state measurement, and which is a model of the flattening ability of the chuck. In 
this case, a structural analysis is performed of constant pressure acting to deform the 
photomask against a rigid, flat plane. Applying this model to a the measurement of the 



freestanding photomask allows the inspector to determine whether the mask will be 
flattened within specification, or whether its freestanding state is so badly deformed that 
it cannot be flattened. 

As proposed, the new method requires that an analysis be performed for each part 
that is to be inspected. However, the number of simulations can be radically reduced if 
desirable and ease the job of deciding whether to accept or reject a particular part. For 
example, a more practical approach is to decompose the errors in the freestanding part, 
that is, the departure of the freestanding part from the ideal part, and then perform the 
analysis on the decomposition of the error. In this way, the analysis need only be applied 
to each mode of the decomposition to understand how that mode is contributes to the 
predicted functional shape. The analysis is therefore performed only once for each mode, 
in advance of all inspection measurements. 

A further simplification brought about by decomposing the error of the 
freestanding part into modes is that the specification process to describe an acceptable 
part can be performed in terms of these modes. In the case of the photomasks for 
example, the departure of the freestanding shape from a flat plane is decomposed into 
orthogonal Legendre modes. The electrostatic chuck can easily flatten the low-order 
modes, but does little to attenuate higher-order modes. Therefore, a part can contain 
higher amplitudes of low-order modes and still be quite acceptable. The specification 
states exactly what amplitude of each mode is acceptable. This changes the acceptance 
decision from one of directly comparing the difference between the part measurements to 
a drawing to one of assessing the magnitudes of modes in the decomposition of the error. 
This is analogous to limiting the power spectrum of the error of an optical surface as a 
way to specify its acceptability. 

In special cases, additional simplification may arise in determining the acceptance 
of a part. Other criteria can be used to determine the acceptability of a part such as the 
energy to deform the freestanding part into the ideal size and shape. Another criterion is 
the maximum stress that occurs in deforming the freestanding part into the ideal part. 

Method of Modeling the Deformation Due to Fixturing 

Finite Element Analysis 
Finite element method is the simplest way to model and simulate the deformations 

of thin shells subject to various boundary conditions. The models can be built using 
various elements described in the previous sections. Commercial and homemade finite 
element codes are used to simulate the results for thin shell problems in this project. The 
commercial codes considered for use on this project are Pro Mechanica, ANSYS, 
ABAQUS, and COSMOS. The homemade finite element codes considered for this 
project are Nike, and FEAP (a simple Fortran FEA code). Nike is a finite element code 
that has been developed for internal use at Lawrence Livermore National Laboratory. 
These codes are used to check and verify the consistency of the results of each code 
relative to another. Pro Mechanica, ABAQUS, COSMOS, and FEAP were selected for 
use on this project. 



Close Form Solution 
Closed form solutions were also evaluated for this project. The selection of load 

cases for the actual experiment does not have closed form solutions but simpler load 
cases were evaluated and compared to the results of the FEA. An example of a simple 
load case that has a closed form solution is a cylinder with a uniform pressure applied to 
the inner or outer surface. Comparison of results between this simple load case and the 
FEA results allowed the experimenters to eliminate Pro Mechanica as a viable option for 
this project. Pro Mechanica produced results that were inconsistent with closed form 
results and the other FEA codes. 

Uncertainty in the Process 
In order to increase the usefulness of reported measurement values a statement of 

uncertainty must be included. Thus, the many contributors to the overall uncertainty 
must be assessed. In addition to the typical uncertainties associated with data acquisition 
(hardware), there is additional uncertainty associated with the FEA. A “home grown” 
FEA code was used for this work. Thus, more complete knowledge of the underlying 
operations and the associated uncertainty was realized. Significant contributors to the 
overall uncertainty are given below. 

Material Properties 
Assigning material properties to an element in an FEA study makes the significant 

assumption that the part model being analyzed has the same material property as the 
actual part. It is typically assumed that the parts will be homogeneous and isotropic. In 
most instances these assumptions are not completely accurate. These assumptions result 
in uncertainty in the FEA results. The effect of variation in the material properties on the 
FEA results can be determined. For example, the Young’s modulus is directly 
proportional to deflection. Thus, if the Young’s Modulus varies by 20%’ then deflections 
can also vary by 20%. 

Standard tensile tests can accurately measure the Young’s modulus of a material 
to about 1%. The accuracy is worse for determining Poisson’s ratio as a result of the 
uncertainties in measuring lateral displacement. Ultrasonic methods for measuring 
mechanical properties have been explored and results show improved accuracy in the 
determination of mechanical properties. The fundamental principle is measurement of 
ultrasonic velocities generated by a dynamic pressure wave into a material of known 
thickness and measuring the transit time of the emerging acoustic pressure wave. The 
uncertainty in Young’s modulus calculation based on this based is dependent on the 
density of the material and the thickness of the medium. The Young’s modulus’ 
calculated uncertainty based on uncertainties in thickness and density is determined to be 
around 0.4%. This uncertainty is improved to 0.2% with improved density measurement. 
Detailed results for this calculation are given in Appendix A. 

Mesh 
The accuracy of the solution is dependent on the quality of the mesh. The FEA 

convergence is also greatly affected by the mesh quality. The global displacement should 
converge to a stable value and any results of interest should converge locally. A more 



subjective measure of the quality of the mesh is its appearance and ability to visually 
convey the geometry it represents. Typically, the better-looking mesh is better and a bad- 
looking mesh almost always indicates a problem. Equilateral triangles and squares are 
the ideal elements to use with smooth and gradual transitions without skinny, distorted 
elements. The type of elements used (i.e. p-elements or h-elements) is also a factor in 
mesh density. The use of higher order p-elements does not require as dense a mesh as 
same h-elements for the same model. P-elements allow for higher edge polynomial 
orders which can improves the representation of the load curvature. 

Boundary Conditions 
Boundary conditions are difficult to model since physical interactions of 

constraints and modeled geometry are complex. For the purposes of experimental 
validation it is possible to design geometry and fixtures to create boundary conditions 
that are more accurately modeled. This has been achieved by producing boundary 
conditions that have very little friction. An exact constraint fixture also greatly reduces 
the unknown forces acting on the model. 

Linear S fa tic Assumption 
Linear static solutions are most common solutions available when using finite 

element analysis. The popularity of this solution often obscures the fact that it represents 
a significant assumption of linear events. Linear event are typical idealized in most 
problems and do not typically exist. However, linearity in thin shell analysis is a good 
assumption because of low-stress condition that is created during bending of the shell. 
Thin shells are used to experimentally validate the process for this work. 

Element Type 
When using finite element analysis different element types can be used to model 

thin shells. Two candidate elements for this work are shell elements and hexahedral solid 
elements. Shell elements typically represent thin-walled structures. They can be 
quadrilateral or trilateral. A quadrilateral mesh is usually more accurate mesh of similar 
density based on trilateral elements. Most preprocessors can mesh a surface with quads 
only or apply a quad dominant mesh where triangles are used only when the mesher 
cannot resolve an area within specified element tolerances. Triangles are acceptable in 
regions of gradual transitions. Linear or first order shell elements are normally planar 
and degrade in accuracy as their initial definition deviates from planar. This is an issue 
only for quad elements because a three-noded triangle must be planar. Higher order shell 
elements can provide accurate results with curved initial geometries. A benefit for using 
higher order elements is that positioning the mid-side nodes on the actual curved 
geometry increases the model’s accuracy. P-elements are ideal to represent bi-directional 
curvature and can smoothly represent initial geometry. 

Most first order triangle element are only capable of calculating a single strain 
value across the entire element. Consequently, they are known as constant strain 
elements. This limitation can lead to overly stiff results under a given load as localized 
strain gradient will be difficult, if not impossible, to capture. They do provide adequate 
results when used on flat or gently curving surfaces with minimal strain variance across 
the span. Linear quad elements have a linear strain distribution fi-om one node to the next 



so they are better at capturing localized stresses. Adding mid-side nodes to both these 
elements improves their strain distribution by a polynomial order. 

///-Condition Stiffness Matrix 
Ill-condition stiffness matrix results in solutions that could be an order of 

magnitude different in value from a few percent change in the stiffness coefficient matrix. 
In matrix terminology, the rows of an ill-conditioned matrix are almost linearly 
dependent. For a 2 by 2 systems, this means that the second row of the coefficient matrix 
is almost a scalar multiple of the first row. In structural terminology, a major cause of ill- 
conditioning in practical finite element models is a large different in stiffness with the 
stiffer region being supported by the more flexible region. This circumstance shifts 
essential numerical information to the latter digits of stiffness coefficient Kij. These 
latter digits may be so few in number that the solution in worthless. Physically, the stiffer 
region has one or more displacement states that are almost rigid-body motions within a 
more flexible supporting structure. The limiting case in a structure without any supports: 
it has only rigid-body motion in static analysis, and its stiffness matrix is singular. 

In this particular study this problem can be encountered when a flexible shell 
element is modeled and it is connected to a stiff boundary condition. This can result in 
high unrealistic deflections at the node. This problem can be mitigated by distributing 
the loading at number of nodes around the boundary condition as oppose to a single node 
connection. 

A numerical measure of ill-conditioning in a coefficient matrix is the condition 
number. A large condition number denotes an unstable solution and warns that a finite 
element solution may contain appreciable error. The condition number of matrix K 
(stiffness matrix) is simply defined as (l), 

a m a x  

a m i n  

C(K) = - 

where Amax and Amin are the largest and smallest eigenvalues of matrix K. It can be shown 
that for each power of ten in the ratio AmaxAmin,  the operations of equation solving lose 
about one digit of accuracy in the displacement mode associated with Amin (Cook, 1989). 
The estimated accuracy loss is (2). 

log,, c . (2) 
;1,ax - 

a m i n  

accurate digit loss = log,, -- 

For example, for C(K)=105, if computer has seven-digit capacity, only two digits 
are reliable in the computed displacements. With sixteen-digit capacity, eleven accurate 
digits remain. 

Uncertainty Management 
An effective measurement requires management of uncertainty. Once the 

uncertainty contributors are identified steps can be taken to minimize their magnitude. 
For this work action is required on both the data acquisition (hardware) and analysis 



(software) siaes. On tne nardware side, multiple measurements are sake: nd thc 
fixturing forces and displacements are recorded. To facilitate the analysis, the cylinder is 
measured close to its free shape the material properties are measured. 

1: c irta i nt) ntributc 

I Numerical Integration Zero I Linear Map Elements to Model Space ' 

"Grtain *-- tributo 

Experimental Demonstration 
A copper thin walled cylinder was manufactured under carefully controllec, 

conditions. A cylinder was chosen because of its manufacturability and because it can be 
oriented so that gravity has little effect. The goal of the design was to reduce the 
uncertainty in the measurement to small values compared to those for FEA. 

Figure 7 shows the cylinder at an intermediate step in the manufactmng process. 
A fixturing device was built to exactly constrain the cylinder. The design facilitate(' 
readings nCboth displacements of the cylinder and reaction forces at the constraint- 



The actuators on the fixturing device deformed the cylinder approximately 2% of 
its wall thickness over 15 steps. Measurements of the displacement were obtained by 
placing the entire fixturing device on a Trope1 CylinderMaster 25 cylinder inspection 
device. 

Figure 9 illustrates the deformations (exaggerated) induced by the fix 
fixture contacted the cylinder at 3 points and produces a tri-lobe deformation 

Measurement Data Analysis 
The goal of the numerical simulation section is to determine the stress-free 

configuration for the test cylinder from a given set of experimental data. The 
experimental data was determined based on a set of sequential optical measurements. The 
experimental data was determined follows: first, the test cylinder was set on a loading 
fixture and an initial radial deviation map is obtained, denoted as AXo. The test cylinder 
was then incrementally displaced at three points on the outer surface of the cylinder and 
the corresponding radial deviations are recorded. A maximum radial displacement of 
approximately 2% of the wall thickness is imposed over 15 increments. 



Figure IO: Load-Displacement Curve at  90' Displacement Boundary Condition 

u I1 
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Figure 11 : Load-Displacement Curve at 210' Displacement Boundary Condition 

Figure 12 Load-Displacement Curve at 330" Displacement Boundary Condition 



A plot of the radial force versus radial displacement for each of the three 
boundary conditions is shown in Figure 10 through Figure 12. As shown from Figure 10 
through Figure 12 the response is linear and returns to its initial state to within the 
uncertainty of the optical measurements. Given the linearity and the inherent elasticity of 
the load-deflection curves a linear-elastic shell formulation was used for the numerical 
simulations. In addition, it is also assumed that the elastic material properties and wall 
thickness are known and constant throughout the deformation. 

An overview of the procedure used to determine the stress-free state is given below. 

0 The initial finite element discretization was determined by superimposing the 
experimental radial deviation map in the unloaded configuration, AXo, to the 
geometry of a “pure” right circular cylinder, XO. The resulting initial finite 
element discretization is denoted as X = XO + AXO. 

Figure 13 Finite Element Mesh Discretization, 256x35 

Note the grid resolution of the experimental data and the finite element 
discretization coincide, specifically the grid consists of 256 data points around the 
circumference and 35 data points along the longitudinal axis of the cylinder, see 
Figure 13. 

0 Since the discretization of the experimental data and the finite element mesh 
coincide the prescribed normal displacement boundary conditions correlate 
directly to the experimental data. 

I I 

Figure 14 Locations of the Radial Boundary Conditions 



The loading fixture imposes a prescribed normal displacement (over 15 
increments), of approximately 2% of the wall thickness, to the outer surface of the 
cylinder at three locations equally spaced. Figure 14 illustrates the radial 
displacement boundary conditions. 

- Given the initial finite element discretization, X, and the three displacemen, 
boundary conditions (based on the experimental data) contour maps of the radial 
displacement for the experimental and a preliminary finite element simulation can 
be plotted. 

;: Contour Plot of Radial Displacementsfor the Experimental Data and 
Initial Finite Element Discretization. Units are mm. 

rigure 15 shows the contour maps. Note that both the experimental 
numerical results are based on the same initial configuration. 

0 Recall the goal is to minimize the error between the deformed coordinates of the 
finite element discretization to that of the experimental data. To obtain this 
minimization a simple coordinate update scheme shown below is utilized. 

). Solve for the nodal displacements u 

where K is the tangent matrix and R is the residual vector. 

I. Update iteration counter k=k+l 
i . Update the coordinates by setting x@') = x@) + (&X - u 9 ) )  where a i 

the difference in the initial and final configurations (loading portion of the 
curve) of the experimental data. 



8. If (r>TOL) repeat from (4) or else finish and report X=U@+') 

0 Once convergence is achieved then the updated coordinates, x, are stored. Note 
using an initial finite element discretization with coordinates, x, and imposing the 
experimental displacement boundary conditions the final deformed configuration 
of the numerical model will approximate the deformed configuration of the 
experimental data to within the uncertainty of the data. The stress-free 
configuration is then obtained by unloading the radial displacement boundary 
conditions or simply x. 
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Figure 16: Contour Plots of the Radial Coordinates for the Experimental Data, Initial 
Finite Element Discretization and Final (Stress Free) Discretization 

A three-dimensional contour map of the deformed radial coordinates for the 
experimental, initial @e. initial iteration) finite element analysis, and the final (i.e. 
converged) finite element analysis are shown in Figure 16. 
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Figure 17: Contour Plots for the Error in Radial Coordinates of the initial and Final ( 
Stress Free) Discretization Referenced from the Experimental Data 



0 Figure 18 depicts the initial configurations for the experimental data and the 
computed stress-free finite element data. 

10 
X 
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To assess th- uncertainty of the optically measured cylinder data to tha. _ _  -. 

“perfect” or “pure” cylinder and the stress-free configuration developed from the finite 
element analysis several scalar measures were utilized. 

R. r ----- ” 2  

(mm) (mm) I 

Comparison of the experimental and finite 5.467~10-~ 1.158 x104 
element data 
Comparison of the experimental and pure 1.883~10-~ 5.156~10-’ 
cylinder data 
Stress-free finite element configuration to 7.632~10” 
initial experimental configuration 

1.047~10’ Stress-free finite element configuration to 
initial pure cylinder configuration 
Initial experimental configuration to pure -- -- 2.2 17x1 0’ 
cylinder configuration 
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Tqble 2 lists +he various scalars used, specifically an infinity norm defined as (3), 

wllere Rij is the deformed radial coordinates associated with the discretization, the 
superscript exp denotes the experimental data, feu denotes the final finite element data, 
and pure denotes the data for a pure or perfect cylinder. The 2-norm defined as (4), 



and the last scalar measure is an energy term, E , ,  which is defined as the work required 
(i.e., radial force * radial distance) to deform a given initial configuration (e.g., the pure 
cylinder configuration) to another initial configuration (e.g., the stress- free finite element 
configuration). 

Conclusion 
The problem of metrology of non-rigid objects is complex. There is no pedigreed 

process as with rigid artifacts. The problem is encountered in normal industrial 
operations such as sheet metal processes but often addressed in non-generalizable 
methods. Further, it is encountered in precision engineering because, at some level of 
precision, everything is non-rigid. 

This work provides new insight into the metrology of non-rigid objects. The 
research problem has been identified - a significant contribution in itself. A method to 
address the problem was formulated and demonstrated experimentally on a thin walled 
copper cylinder. The free shape was determined and several acceptance metrics 
computed. 

Assessing the uncertainty in the non-rigid metrology process is a complicated 
issue. In addition to the typical uncertainty associated with the data acquisition there is 
uncertainty introduced with the computational analysis. Factors contributing to the 
overall uncertainty were identified and the relative contributions for many of them were 
quantified. 
The results of this work have applications in several areas. At LLNL, the results can be 
used by EUVL for photomasks. NIF can also benefit by using the techniques to 
characterize KDP crystals. The original motivating problem, metrology of hemi-shells is 
possible, but not currently a priority with the customer. The clear posing of the research 
problem makes the issue more salient. This may lead to the desirable outcome of 
increased industrial research in the area. 

This work was performed under the auspices of the U.S. Department of Energy 
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